Cotorsion Pairs Induced by Duality Pairs
نویسنده
چکیده
We introduce the notion of a duality pair and demonstrate how the left half of such a pair is “often” covering and preenveloping. As an application, we generalize a result by Enochs et al. on Auslander and Bass classes, and we prove that the class of Gorenstein injective modules—introduced by Enochs and Jenda—is covering when the ground ring has a dualizing complex.
منابع مشابه
Infinite Dimensional Tilting Modules and Cotorsion Pairs
Classical tilting theory generalizes Morita theory of equivalence of module categories. The key property – existence of category equivalences between large full subcategories of the module categories – forces the representing tilting module to be finitely generated. However, some aspects of the classical theory can be extended to infinitely generated modules over arbitrary rings. In this paper,...
متن کاملLocalizations on Extriangulated Category Associated with Twin Cotorsion Pairs
We study localizations of an extriangulated category B and localizations of hearts of twin cotorsion pairs on B. We also give a generalized nearly Morita equivalence between the certain localizations of hearts of cotorsion pairs.
متن کاملCotorsion pairs and model categories
The purpose of this paper is to describe a connection between model categories, a structure invented by algebraic topologists that allows one to introduce the ideas of homotopy theory to situations far removed from topological spaces, and cotorsion pairs, an algebraic notion that simultaneously generalizes the notion of projective and injective objects. In brief, a model category structure on a...
متن کاملOn the Cogeneration of Cotorsion Pairs
Let R be a Dedekind domain. In [6], Enochs’ solution of the Flat Cover Conjecture was extended as follows: (∗) If C is a cotorsion pair generated by a class of cotorsion modules, then C is cogenerated by a set. We show that (∗) is the best result provable in ZFC in case R has a countable spectrum: the Uniformization Principle UP implies that C is not cogenerated by a set whenever C is a cotorsi...
متن کاملThe Countable Telescope Conjecture for Module Categories
By the Telescope Conjecture for Module Categories, we mean the following claim: “Let R be any ring and (A,B) be a hereditary cotorsion pair in Mod-R with A and B closed under direct limits. Then (A,B) is of finite type.” We prove a modification of this conjecture with the word ‘finite’ replaced by ‘countable’. We show that a hereditary cotorsion pair (A,B) of modules over an arbitrary ring R is...
متن کامل